Search results for "soil erosion."

showing 10 items of 146 documents

Flow resistance equation for rills

2017

In this paper, a new flow resistance equation for rill flow was deduced applying dimensional analysis and self‐similarity theory. At first, the incomplete self‐similarity hypothesis was used for establishing the flow velocity distribution whose integration gives the theoretical expression of the Darcy–Weisbach friction factor. Then the deduced theoretical resistance equation was tested by some measurements of flow velocity, water depth, cross section area, wetted perimeter, and bed slope carried out in 106 reaches of some rills shaped on an experimental plot. A relationship between the velocity profile, the channel slope, and the flow Froude number was also established. The analysis showed …

010504 meteorology & atmospheric sciences0208 environmental biotechnology02 engineering and technology01 natural sciencesPlot (graphics)Physics::Fluid Dynamicssymbols.namesakeWetted perimeterFroude numberSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliGeotechnical engineering0105 earth and related environmental sciencesWater Science and TechnologyFlow resistancegeographysoil erosiongeography.geographical_feature_categoryrill flowMechanicsplot measurement020801 environmental engineeringRillDistribution (mathematics)Flow resistanceFlow velocityFlow (mathematics)velocity profilesymbolsGeologyHydrological Processes
researchProduct

Measuring, modelling and managing gully erosion at large scales: A state of the art

2018

Soil erosion is generally recognized as the dominant process of land degradation. The formation and expansion of gullies is often a highly significant process of soil erosion. However, our ability to assess and simulate gully erosion and its impacts remains very limited. This is especially so at regional to continental scales. As a result, gullying is often overlooked in policies and land and catchment management strategies. Nevertheless, significant progress has been made over the past decades. Based on a review of >590 scientific articles and policy documents, we provide a state-of-the-art on our ability to monitor, model and manage gully erosion at regional to continental scales. In this…

010504 meteorology & atmospheric sciencesData productsDrainage basinGully erosionSpatial data010502 geochemistry & geophysics01 natural sciencesModellingGully erosionGully expansionSpatial analysisSoil Erosion0105 earth and related environmental sciencesgeographygeography.geographical_feature_categorybusiness.industryEnvironmental resource managementSediment yieldSedimentContinental15. Life on landMeasuringRegionalEuropeCurrent (stream)PolicyContinental Europe Gully erosion Gully expansion Gully initiation Measuring Modelling Policy Prediction Regional Sediment yield Spatial dataSection (archaeology)Land degradationGeneral Earth and Planetary SciencesEnvironmental sciencePredictionbusinessGully initiationEarth-Science Reviews
researchProduct

Dissipative analogies of step-pool features: From rills to mountain streams

2019

Abstract In this paper the dissipative similarity of step-pool units at different spatial scales ranging from rills to streams is analyzed. This investigation benefits from the latest theoretical advances in open channel flow resistance, high-resolution topography from close-range photogrammetry applied to rill erosion and the availability of published data from literature on step-pool streams. At first, the integration of a power velocity distribution allowed to obtain a theoretically-based expression of Darcy-Weisbach friction factor, in which Γ function and δ exponent of the velocity profile are included. Then this theoretically-deduced flow resistance relationship is calibrated and test…

010504 meteorology & atmospheric sciencesFlow (psychology)GeometrySTREAMSPlot measurement01 natural sciencesFlow velocityCalibrationSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestali0105 earth and related environmental sciencesEarth-Surface Processesgeographygeography.geographical_feature_category04 agricultural and veterinary sciencesFunction (mathematics)Open-channel flowRillFlow velocityFlow resistance040103 agronomy & agricultureDissipative systemRill flowSoil erosion0401 agriculture forestry and fisheriesStep-poolGeology
researchProduct

Tillage Impacts on Initial Soil Erosion in Wheat and Sainfoin Fields under Simulated Extreme Rainfall Treatments

2021

The main aim of this research was to determine the potential effects of different tillage systems (TT: traditional tillage and RT: reduced tillage) on runoff and erosion at two different locations (Kahramanmaras and Tarsus, Southern Turkey) under (i) fallow, (ii) wheat (Triticumaestivum L.), and (iii) sainfoin (Onobrychissativa L.) crops. Rainfall simulations with intensity of 120 mm h&minus

010504 meteorology & atmospheric sciencesGeography Planning and Developmentlcsh:TJ807-830lcsh:Renewable energy sourcesrunoffManagement Monitoring Policy and Law01 natural sciencesRunoff volumelcsh:Environmental sciences0105 earth and related environmental sciencesSediment yieldlcsh:GE1-350soil erosionextreme rainfall eventsRenewable Energy Sustainability and the Environmentlcsh:Environmental effects of industries and plants04 agricultural and veterinary sciencesrainfall simulationreduced tillageSoil tillageSediment concentrationRunoff coefficientTillagelcsh:TD194-195Agronomy040103 agronomy & agricultureErosion0401 agriculture forestry and fisheriesEnvironmental scienceSurface runoffSustainability
researchProduct

Comparing flow resistance law for fixed and mobile bed rills

2019

Rills caused by run-off concentration on erodible hillslopes have very irregular profiles and cross-section shapes. Rill erosion directly depends on the hydraulics of flow in the rills, which may differ greatly from hydraulics of flow in larger and regular channels. In this paper, a recently theoretically deduced rill flow resistance equation, based on a power–velocity profile, was tested experimentally on plots of varying slopes (ranging from 9% to 26%) in which mobile and fixed bed rills were incised. Initially, measurements of flow velocity, water depth, cross-section area, wetted perimeter, and bed slope, carried out in 320 reaches of mobile bed rills and in 165 reaches of fixed rills, …

010504 meteorology & atmospheric sciencesHydraulicsfixed bedFlow (psychology)0207 environmental engineering02 engineering and technology01 natural scienceslaw.inventionWetted perimetersymbols.namesakelawFroude numberSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestalirill hydraulic020701 environmental engineering0105 earth and related environmental sciencesWater Science and Technologygeographysoil erosiongeography.geographical_feature_categoryrill flowplot measurementRillFlow conditionsFlow velocitymobile bedsymbolsflow resistanceSediment transportGeologyHydrological Processes
researchProduct

Testing Sediment Connectivity at the Experimental SPA2 Basin, Sicily (Italy)

2017

The concept of sediment delivery can be used as a measure of sediment connectivity, and it can be linked to the structural connectivity (morphological unit, slope length, slope steepness, travel time) of a basin and to the hydrological connectivity (rainfall–runoff processes at morphological unit scale). In this paper, the sediment connectivity concept was tested at basin scale applying SEdiment Delivery Distributed model, which takes into account the hillslope sediment transport, and using sediment yield measurements carried out at SPA2 experimental basin (Sicily, Italy). For the SPA2 basin discretized into morphological units, the SEdiment Delivery Distributed model was first calibrated a…

010504 meteorology & atmospheric sciencesScale (ratio)0208 environmental biotechnologyMagnitude (mathematics)Soil Science02 engineering and technologyExperimental basinDevelopmentStructural basin01 natural sciencesEnvironmental ChemistryDevelopment3304 Education0105 earth and related environmental sciencesGeneral Environmental ScienceSediment connectivityHydrology2300Distributed element modelSEDD modelSediment020801 environmental engineeringErosionSoil erosionWEPPSediment transportSediment deliveryGeology
researchProduct

Testing simple scaling in soil erosion processes at plot scale

2018

Abstract Explaining scale effects for runoff and erosion improves our understanding and simulation ability of hydrological and erosion processes. In this paper, plot scale effects on event runoff per unit area (Qe), sediment concentration (Ce) and soil loss per unit area (SLe) were checked at El Teularet-Sierra de Enguera experimental site in Eastern Spain. The measurements were carried out for 31 events occurring in the years 2005 and 2007 in bare ploughed plots ranging from 1 to 48 m2. The analysis established the scaling relationship by dimensional analysis and self-similarity theory, and tested this relationship at different temporal scales ranging from event to annual scale. The dimens…

010504 meteorology & atmospheric sciencesScale (ratio)Runoff0208 environmental biotechnologySoil scienceNatural rainfall02 engineering and technology01 natural sciencesHydrology (agriculture)Settore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliTemporal scalesScaling0105 earth and related environmental sciencesEarth-Surface ProcessesPlotsSedimentPE&RC020801 environmental engineeringScalePlotSediment concentrationSpatial ecologyErosionSoil erosionEnvironmental scienceSurface runoff
researchProduct

Applying the USLE Family of Models at the Sparacia (South Italy) Experimental Site

2016

Soil erosion is a key process to understand the land degradation, and modelling of soil erosion will help to understand the process and to foresee its impacts. The applicability of the Universal Soil Loss Equation (USLE) at event scale is affected by the fact that USLE rainfall erosivity factor does not take into account runoff explicitly. USLE-M and USLE-MM, including the effect of runoff in the event rainfall– runoff erosivity factor, are characterized by a better capacity to predict event soil loss. The specific objectives of this paper were (i) to determine the suitable parameterization of USLE, USLE-M and USLE-MM by using the dataseries of Sparacia experimental site and (ii) to evaluat…

010504 meteorology & atmospheric sciencesScale (ratio)Soil ScienceSoil scienceDevelopment01 natural sciencesDeposition (geology)Soil lossplot soil loUSLE-MMSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliEnvironmental Chemistry0105 earth and related environmental sciencesGeneral Environmental ScienceEvent (probability theory)Hydrologysoil erosionSediment04 agricultural and veterinary sciencesUniversal Soil Loss Equation040103 agronomy & agricultureLand degradationUSLE-M0401 agriculture forestry and fisheriesEnvironmental scienceSurface runoffEvent scaleLand Degradation & Development
researchProduct

An assessment of the global impact of 21st century land use change on soil erosion

2017

Human activity and related land use change are the primary cause of accelerated soil erosion, which has substantial implications for nutrient and carbon cycling, land productivity and in turn, worldwide socio-economic conditions. Here we present an unprecedentedly high resolution (250 × 250 m) global potential soil erosion model, using a combination of remote sensing, GIS modelling and census data. We challenge the previous annual soil erosion reference values as our estimate, of 35.9 Pg yr−1 of soil eroded in 2012, is at least two times lower. Moreover, we estimate the spatial and temporal effects of land use change between 2001 and 2012 and the potential offset of the global application o…

010504 meteorology & atmospheric sciencesScienceGeneral Physics and AstronomyHigh resolution010501 environmental sciences01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyAnthropogenic effect census conservation management environmental impact assessment GIS global perspective human activity land use change remote sensing soil conservation soil erosionSoutheast asiaCarbon cycleNutrientSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliLand use land-use change and forestrylcsh:Scienceskin and connective tissue diseases0105 earth and related environmental sciencesLand productivityMultidisciplinaryQGeneral ChemistryAgriculture and Soil ScienceReference valuesEnvironmental sciencelcsh:QPhysical geographysense organs
researchProduct

Predicting plot soil loss by empirical and process-oriented approaches. A review

2018

Soil erosion directly affects the quality of the soil, its agricultural productivity and its biological diversity. Many mathematical models have been developed to estimate plot soil erosion at different temporal scales. At present, empirical soil loss equations and process-oriented models are considered as constituting a complementary suite of models to be chosen to meet the specific user need. In this paper, the Universal Soil Loss Equation and its revised versions are first reviewed. Selected methodologies developed to estimate the factors of the model with the aim to improve the soil loss estimate are described. Then the Water Erosion Prediction Project which represents a process-oriente…

010504 meteorology & atmospheric sciencesSoil erosion; Soil loss measurements; Universal soil loss equation; Water erosion prediction project; Bioengineering; Mechanical Engineering; Industrial and Manufacturing EngineeringBioengineeringSoil science01 natural sciencesIndustrial and Manufacturing EngineeringPlot (graphics)lcsh:Agriculturewater erosion prediction project.Soil loss measurementSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestalilcsh:Agriculture (General)Temporal scalesReliability (statistics)0105 earth and related environmental sciencesgeographysoil loss measurementsgeography.geographical_feature_categoryPhysical modelMathematical modelMechanical EngineeringWater erosion prediction projectlcsh:S04 agricultural and veterinary sciencesUniversal Soil Loss Equationlcsh:S1-972RillUniversal Soil Loss EquationSoil erosion040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceSpatial variability
researchProduct